Extensions 1→N→G→Q→1 with N=C22 and Q=SD16

Direct product G=N×Q with N=C22 and Q=SD16
dρLabelID
C22×SD1632C2^2xSD1664,251

Semidirect products G=N:Q with N=C22 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C221SD16 = C88D4φ: SD16/C8C2 ⊆ Aut C2232C2^2:1SD1664,146
C222SD16 = C22⋊SD16φ: SD16/D4C2 ⊆ Aut C2216C2^2:2SD1664,131
C223SD16 = Q8⋊D4φ: SD16/Q8C2 ⊆ Aut C2232C2^2:3SD1664,129

Non-split extensions G=N.Q with N=C22 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C22.1SD16 = D8.C4φ: SD16/C8C2 ⊆ Aut C22322C2^2.1SD1664,40
C22.2SD16 = C23.31D4φ: SD16/D4C2 ⊆ Aut C2216C2^2.2SD1664,9
C22.3SD16 = M5(2)⋊C2φ: SD16/D4C2 ⊆ Aut C22164+C2^2.3SD1664,42
C22.4SD16 = C8.17D4φ: SD16/D4C2 ⊆ Aut C22324-C2^2.4SD1664,43
C22.5SD16 = C8.Q8φ: SD16/D4C2 ⊆ Aut C22164C2^2.5SD1664,46
C22.6SD16 = C23.47D4φ: SD16/D4C2 ⊆ Aut C2232C2^2.6SD1664,164
C22.7SD16 = C22.SD16φ: SD16/Q8C2 ⊆ Aut C2216C2^2.7SD1664,8
C22.8SD16 = C23.46D4φ: SD16/Q8C2 ⊆ Aut C2232C2^2.8SD1664,162
C22.9SD16 = C22.4Q16central extension (φ=1)64C2^2.9SD1664,21
C22.10SD16 = C2×D4⋊C4central extension (φ=1)32C2^2.10SD1664,95
C22.11SD16 = C2×Q8⋊C4central extension (φ=1)64C2^2.11SD1664,96
C22.12SD16 = C2×C4.Q8central extension (φ=1)64C2^2.12SD1664,106

׿
×
𝔽